Enhancements of rack counting invariants via dynamical cocycles
نویسندگان
چکیده
We introduce the notion of N-reduced dynamical cocycles and use these objects to define enhancements of the rack counting invariant for classical and virtual knots and links. We provide examples to show that the new invariants are not determined by the rack counting invariant, the Jones polynomial or the generalized Alexander polynomial.
منابع مشابه
Link invariants from finite racks
We define ambient isotopy invariants of oriented knots and links using the counting invariants of framed links defined by finite racks. These invariants reduce to the usual quandle counting invariant when the rack in question is a quandle. We are able to further enhance these counting invariants with 2-cocycles from the coloring rack’s second rack cohomology satisfying a new degeneracy conditio...
متن کاملGeneralizations of Quandle Cocycle Invariants and Alexander Modules from Quandle Modules
Quandle cohomology theory was developed [5] to define invariants of classical knots and knotted surfaces in state-sum form, called quandle cocycle (knot) invariants. The quandle cohomology theory is a modification of rack cohomology theory which was defined in [11]. The cocycle knot invariants are analogous in their definitions to the Dijkgraaf-Witten invariants [8] of triangulated 3-manifolds ...
متن کاملA pr 1 99 7 Dynamical Cocycles with Values in the Artin Braid Group
By considering the way an n-tuple of points in the 2-disk are linked together under iteration of an orientation preserving diffeomorphism, we construct a dynamical cocycle with values in the Artin braid group. We study the asymptotic properties of this cocycle and derive a series of topological invariants for the diffeomorphism which enjoy rich properties.
متن کاملStructures and Diagrammatics of Four Dimensional Topological Lattice Field Theories
Crane and Frenkel proposed a state sum invariant for triangulated 4-manifolds. They defined and used new algebraic structures called Hopf categories for their construction. Crane and Yetter studied Hopf categories and gave some examples using group cocycles that are associated to the Drinfeld double of a finite group. In this paper we define a state sum invariant of triangulated 4-manifolds usi...
متن کاملVirtual Knot Invariants from Group Biquandles and Their Cocycles
A group-theoretical method, via Wada’s representations, is presented to distinguish Kishino’s virtual knot from the unknot. Biquandles are constructed for any group using Wada’s braid group representations. Cocycle invariants for these biquandles are studied. These invariants are applied to show the non-existence of Alexander numberings and checkerboard colorings.
متن کامل